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A model for simulating the process of growth, collapse and rebound of a cavitation
bubble travelling along the flow through a convergent–divergent nozzle producing a
cavitating water jet is established. The model is based on the Rayleigh–Plesset bubble
dynamics equation using as inputs ambient pressure and velocity profiles calculated
with the aid of computational fluid dynamics (CFD) flow modelling. A variable
time-step technique is applied to solve the highly nonlinear second-order differential
equation. This technique successfully solves the Rayleigh–Plesset equation for wide
ranges of pressure variation and bubble original size and saves considerable computing
time. Inputs for this model are the pressure and velocity data from CFD calculation.
To simulate accurately the process of bubble growth, collapse and rebound, a heat
transfer model, which includes the effects of conduction plus radiation, is developed
to describe the thermodynamics of the incondensable gas inside the bubble. This heat
transfer model matches previously published experimental data well. Assuming that
single bubble behaviour also applies to bubble clouds, the calculated distance from
the nozzle exit travelled by the bubble to the point where the bubble size becomes
invisible is taken to be equal to the bubble cloud length observed. The predictions are
compared with experiments carried out in a cavitation cell and show good agreement
for different nozzles operating at different pressure conditions.

1. Introduction
In cavitating water jets which are submerged in water, cavitation bubbles form and

collapse and travel along the jet. When the bubbles reach a solid target, the target is
eroded owing to the collapse of the bubbles. Figure 1 is a schematic of a cavitating
water jet generated by a convergent–divergent nozzle where bubbles are growing and
collapsing in the flow stream. Experimental results of the cavitating water jet revealed
a strong connection between the length of a bubble cloud and the erosion ability of a
water jet (Qin 2004). To predict the behaviour of a cavitating water jet, we must study
the process of bubble formation, travel and collapse. The most important aspect of
cavitation theory is the bubble dynamics which was originated by Rayleigh (1917).
He studied the mechanics and physics of the formation and collapse of a bubble by
ignoring surface tension and viscous effects. This theory was subsequently amended
by others (Plesset 1949; Knapp, Daily & Hammit 1970; Lauterborn & Bolle 1975;
Young 1989; Shima et al. 1989; Prosperetti 1994).
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Cavitation cellConvergent--divergent nozzle Bubble

Figure 1. Schematic diagram of a cavitating water jet.

Plesset (1949) applied Rayleigh’s equation to the problem of travelling cavitation
bubbles. Knapp (1952) showed a comparison of Rayleigh’s theory with experimental
results. However, because of the difficulties in obtaining pressure fields outside and
inside the bubble, many workers can use only the assumed pressure values to
simulate the bubble growth and collapse; hence, the results obtained can provide
only a qualitative explanation for the cavitation phenomenon. Since the cavitation
phenomenon in a cavitating water jet is typically the reflection of the growth, travel,
collapse and rebound of bubbles experiencing variable external pressures, in order to
study the bubble behaviour, we must obtain information on pressure variation in the
water jet flow. With the advance of computational fluid dynamics (CFD), the pressure
field along a jet flow can be calculated. Qin (2004) studied the flow properties including
the profiles of pressure, velocity and turbulent kinetic energy in water-jet flow using
CFD by comparing various turbulence models with experiments. The study revealed
that there is a substantial pressure reduction in the throat of a convergent–divergent
nozzle flow, which helps explain the mechanism of cavitation formation. The flow
properties calculated from CFD provide the possibility for simulating accurately the
bubble behaviour in a water jet. The major aim of this paper is to establish a proper
model to simulate the process of the growth and collapse of a bubble when it flows
through a convergent–divergent nozzle, so as to predict how far the bubble can travel
before it completely collapses. Such a model provides the basis for predicting the
erosion on a solid target located downstream.

The modelling is based on solving the Rayleigh–Plesset equation involving deter-
mination of the pressure variations inside and outside the bubble, as well as the
selection of a numerical method. The finite-difference method is used to solve the
Rayleigh–Plesset differential equation. The inputs for the model are the profiles of
pressure and velocity calculated using the commercial CFD code, FLUENT. Since the
Rayleigh–Plesset equation is highly nonlinear, any numerical scheme with constant
time step is not able to simulate the whole process of the bubble collapse, especially
the final stage of collapse when the range of pressure variation that the bubble
experiences is large. To handle the large pressure variation, a numerical method with
variable time steps is developed which allows simulation of the violent process of
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the final stage of the bubble collapse. To describe this process, a thermal model is
developed which reflects the heat transfer. The results from the model are compared
with those from experiments.

2. Rayleigh–Plesset equation for a spherical bubble
Consider a spherical bubble of radius R, as a function of time t , in an infinite

domain of liquid. If the temperature in the domain is constant and the liquid is
incompressible, the generalized Rayleigh–Plesset equation describing the motion of
the bubble wall is (Brennen 1995):

ρ
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dt2
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where σ and µ represent the surface tension and viscosity of the liquid, pB is the
pressure inside the bubble and p∞ is the pressure of the liquid surrounding the bubble.
Given p∞, equation (1) can be solved to find R provided pB is known. It is assumed
(Brennen 1995) that a bubble contains some quantity of contaminant gas whose
partial pressure is pgo at a certain bubble reference size, Ro, and some water vapour.
The water vapour pressure, pv , is constant at a constant temperature, and the gas is
assumed to be incondensable so that the gas partial pressure, pg , can be expressed as

pg = pgo

(
Ro

R

)3k

. (2)

Brennen (1995), Plesset & Prosperetti (1977), Chahine (1994), Csanady (1964) used
the following expression for the pressure in a bubble

pB = pv + pg = pv + pgo

(
Ro

R

)3

. (3)

Next, consider the liquid pressure p∞. This is a vital parameter because it is the
variation of p∞ that causes bubbles to grow or collapse. However, there is no direct
or exact expression for p∞. For convenience, some have assumed a simple function for
it. For example, Prosperetti (1994) suggests the form of po(1 − ε sin ωt) where ε is the
amplitude of oscillation, ω its frequency and t is time. Shima & Tsujino (1994) used
the form of p∞ =po(1+A sin ωt) where A is the amplitude of oscillation. Much work
has been done solving the bubble dynamic equation to investigate the phenomenon
of cavitation (i.e. Chahine 1994; Lauterborn, Eick & Philipp 1994; Brennen 1995;
Gong & Hart 1999; Wang & Brennen 1999). Most of these works assumed that
the pressure takes a harmonic function and a small value of amplitude. Since these
pressure amplitudes are neither from measurement nor from calculation for a real
flow, the results obtained have difficulty explaining cavitation related phenomena such
as the bubble cloud size and erosion ability of a cavitating water jet. In this paper, the
pressure distribution in a convergent–divergent nozzle to give p∞ is calculated using
the commercial code, FLUENT, with the RNG k − ε turbulence model. Once p∞ is
determined, the Rayleigh–Plesset equation, equation (1), can be solved numerically.

3. Solution of the Rayleigh–Plesset equation
The numerical solution of the Rayleigh–Plesset equation can be obtained without

difficulty while the variation of pressure inside and outside the bubble is small so
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Density ρ (kgm−3) 996
Viscosity µ (Pa s) 0.798 × 10−3

Surface tension σ (N m−1) 0.072
Vapour pressure pv (MPa) 0.00424

Table 1. Water properties at 300 K (Vargaftik et al. 1996).

140

120

100

P
re

ss
ur

e 
(P

a)

80

60

40

20

0

–20
0 0.00001 0.00002

Time, t (s)

0.00003 0.00004

Figure 2. Pressure profile for testing numerical methods.

that the ratio of the maximum to minimum bubble radius is not too large. Previously
published simulations fall into this category. Moss et al. (1994, 1997) simulated bubbles
with a maximum to minimum bubble ratio of only 150. In the present work, this ratio
is up to 200 000, for which standard numerical schemes experience difficulty. Lohse
(2005) claims that the solution has a singularity. In the present work, while standard
methods such as the adaptive Runge–Kutta method could have been used, the simple
Euler method with variable time steps was used in which the iteration interval �t

varies with the bubble radius R by using the radius change as the criterion for step size.
Assuming pB and p∞ and the initial conditions Ro and Ṙo are known, then by

solving (1) for the bubble radius R, the size of a bubble can be determined from its
initial growth to its final collapse as a function of time. In (1), pB includes pg and
pv . The process of the incondensable gas inside a bubble is complicated and a heat
transfer model including conduction and radiation effects will be proposed later in
this paper. Here, for the purpose of testing the numerical methods, the pressure inside
the bubble, pB , is simply assumed to take the form of (3).

There is no direct or exact analytical expression for p∞. It may be determined
from practical experiments or numerical calculations. In the current investigation, the
value of p∞ is either set as a function or taken from CFD results of the simulations
of nozzle flows. It is assumed that the bubble is in water at a temperature of 300 K
which stays constant. The water properties are given in table 1.

Using the pressure profile in figure 2 with a variable time step based on the change
of bubble size of successive time steps of (Ri − Ri−1)/Ri−1 � 0.05, the solution in
figure 3 was obtained. The sharp collapse phase is captured and the solution is stable,
thus allowing many rebound cycles to be computed.

4. A heat transfer model for simulating cavitation bubble
In the previous section, for the purpose of developing the numerical method

for solving the Rayleigh–Plesset equation, the isothermal process is assumed. This
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Figure 3. Time history of the bubble radius from the variable time step method for the
pressure variation of figure 2, Ro = 0.00001 m and Ṙo = 0 m s−1.

assumption may not be true in the real case of a collapsing bubble. In this section, a
more general heat transfer model is established for calculating the pressure inside the
bubble, pB .

In the Rayleigh–Plesset equation, as mentioned in the previous section, pB represents
the pressure inside the bubble which can be considered as two components, the partial
pressures of vapour and incondensable gas, equation (3). The effects of condensation
of vapour and evaporation of water on temperature have been analysed by Plesset
(1949), who concluded that the temperature changes due to the condensation and
evaporation are insignificant. It is assumed, therefore, that the process is at constant
vapour pressure, pv .

The determination of the pressure of the incondensable gas is more complicated. If
the bubble growth and collapse are treated as an equilibrium thermal process, the gas
pressure takes the polytropic form, equation (2). k = 1 implies an isothermal process
and k = γ = CP /CV = 1.4 implies an isentropic process when the gas phase is air.

Some workers (for example Shima, Tomita & Ohno 1988) assume that the bubble
collapse is an isothermal process, i.e. uniform temperature within the liquid and
within the bubble. Others consider that the collapse is so violent in the final stage
that the isothermal assumption would not be justified. Instead, it is more likely to
be an adiabatic process. Bogoyavlenskiy (1999) assumed an adiabatic process when
simulating the collapse process of an air bubble in water caused by a sound wave.

Neither the isothermal nor the isentropic process can describe accurately the whole
process of the bubble growth and collapse. One might think that a polytropic model
with constant k between 1 and γ will describe the process. However, this is not true
if the whole process of the bubble collapse is considered. When the bubble is in
its larger size phase, the process may be close to isothermal because the speed of
growth and collapse is relatively slow. When the bubble is in its smaller size phase,
the process may be close to adiabatic owing to the extremely fast speed of collapse.
This means that a model with a constant value for k is not able to describe the whole
process. We must analyse the process taking into account all possible thermal effects,
that is, the effects of conduction, convection and radiation. Fujikawa & Akamatsu
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Figure 4. Time history of the bubble radius from the adiabatic model and a heat
conduction model (after Fujikawa & Akamatsu 1980).

(1980) took into consideration the effect of vapour condensation inside the bubble
and the heat conduction in which they assumed the thermal layers developing both
inside and outside the bubble are thin compared with the bubble radius, but they
did not consider the process of radiation which is of most concern in this section.
Also, the results of Fujikawa & Akamatsu (1980) (figure 4) indicate that the vapour
condensation and heat conduction do not play an important role because there is no
significant difference in the time history of the bubble radius when compared with
the adiabatic process.

On the other hand, it has been found that during the collapse of a cavitation
bubble, light is emitted through the phenomenon of luminescence (Marinesco &
Trillat 1933). When the cavitation bubble field is observed in total darkness with a
dark-adapted eye (after 10–15 min), light can be seen emanating from the liquid, often
in the form of filaments (Lauterborn & Ohl 1997). The faint light emitted can also be
photographed with a camera equipped with a micro-channel plate as ‘light intensifier’.
The measurements of the spectrum of sonoluminescence by Taylor & Jarman (1970)
and Flint & Suslick (1991) suggest that a temperature of 5000 K is reached in
the bubble during collapse. Experiments by Barber & Putterman (1991) indicate
a much higher temperature in a very short duration of the order of picoseconds.
Flannigan & Suslick (2005) measured a temperature as high as 15 000 K in a single
bubble containing argon in concentrated aqueous sulfuric acid solutions. Therefore,
a thermodynamic model with the consideration of radiation seems to be essential.

It is generally agreed that the luminescence is due to the extremely high temperature
when the bubble collapses to near its minimum size (Hilgenfeldt, Grossmann & Lohse
1999; Lohse 2005). The high temperatures and the power emissions during collapse
have been predicted numerically with various assumptions (Jarman 1960; Wu &
Roberts 1993, Moss et al. 1994). Moss et al. (1994, 1997) used a two-step model
to simulate a bubble collapse and explained the picosecond-long sonoluminescence.
The second step of their model simulates the final stage of the bubble collapse, in
which a sophisticated equation constructed from a combination of data and theory is
employed to describe the air state inside the bubble, including dissociation, ionization
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Figure 5. Scheme of thermal analysis of a cavitation bubble system.

and intermolecular potentials. However, the energy loss due to the radiation and
thermal conduction of the surrounding water is not included. This may be why they
predicted long ‘tails’ of high temperature which are contrary to experimental evidence.
If an isentropic compression is assumed, the bubble would rebound to a large size in
an unending series of cycles and never disappear owing to lack of energy dissipation.

In the present work, the purpose of simulation of the cavitation bubble is to predict
when and where the bubble size decreases to the point where it eventually disappears
in order to allow the determination of the bubble cloud range in the water jet.
Towards this end, it is assumed that single bubble behaviour is not unlike that of a
collection of bubbles, that is, bubble interaction is assumed negligible.

4.1. Thermal analysis of the process of a bubble growth and collapse

When a cavitation bubble grows and then collapses, the vapour inside the bubble
evaporates or condenses while the pressure inside the bubble does work. When the
bubble radius is around its maximum value, the work done by the pressure on the
bubble system is so small that it can be ignored. However, when the bubble radius
is close to its minimum value, the work done would be significant and a process of
rapid heat transfer would occur.

Consider a system of a bubble surrounded by liquid (figure 5). At an instant of
time, ti , the pressure and temperature inside the bubble are pB and T , respectively.
After a finite time step �t, the change of volume of the bubble is �V . The work
done on the bubble is

wi = −pB�V. (4)

During this short time process, the possible ways of energy transfer between the
bubble and the surrounding liquid include conduction, convection and radiation
(figure 5). Considering that the velocity of the bubble relative to the surrounding
liquid is small compared to the velocity of the bubble wall during collapse, we ignore
the convection effect. The heat losses by conduction and radiation are dQcond and
dQrad.

After this short time interval, �t , the net energy, �U , gained by the contents of the
bubble is given according to the first law of thermodynamics as

�U = −pB�V − dQcond − dQrad. (5)
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This net energy will make the temperature of the gas in the bubble increase by �T

given by

�T =
�U

nCV

, (6)

where n is the number of moles and CV is the specific heat of the gas at constant
volume.

For diatomic gases such as oxygen and nitrogen, which are dominant in the air,
the specific heat is CV = 20.8 J mol−1 K−1. The number of moles n can be determined
from the original volume and temperature of the bubble.

Once �T is obtained by (6), the temperature of the gas after the finite time, �t ,
becomes

Ti = Ti−1 + �T. (7)

Heat loss by conduction is given by

dQcond = −κA∇T dt. (8)

For simplification, the formula for heat transfer between two plane surfaces is used.
The rate of conduction heat transfer is, therefore, calculated from

dQcond =
κA(TB − T∞)

d
�t, (9)

where κ is the thermal conductivity of the water surrounding the bubble. A is the
area of the bubble and d is the distance between the two surfaces. For water at 20 ◦C,
κ = 0.6 Wm−1 K−1.

The area of the bubble surface is 4πR2. However, the thickness of the water layer,
d , is not easy to determine. Since the bubble radius varies during collapse, a constant
value for d is not appropriated. Instead, a value that is proportional to the radius
R may be reasonable. For the purpose of investigating the significance of the layer
thickness, a range of d = (0.1–1)R is assumed. Fortunately, as shown in § 4.2, the
variation of the predicted bubble collapse and rebound size is not significant when d

takes values within (0.1–1)R once the effect of radiation is included. For convenience
of calculation, the layer thickness is taken as equal to R.

Radiation is heat transfer emitted by the bubble in a small time step, �t , and can
be written as

dQrad = eσA
(
T 4

B − T 4
∞
)
�t, (10)

where σ is the Stefan–Boltzmann constant. σ = 5.6703 × 10−8 W m−2 K−4 and e is the
emissivity of the hot surface. When the surface of a bubble is water, the emissivity is
taken to be 0.95.

Substituting (5), (9) and (10) into (6), results in

�T =
1

nCV

[
−pB�V − kA(TB − T∞)

d
�t − eσA

(
T 4

B − T 4
∞
)
�t

]
. (11)

This represents the temperature change of the bubble contents during �t . The
temperature of the bubble contents in finite-difference form becomes

Ti = Ti−1+�T = Ti−1+
1

nCV

[
−pB�V − kA(TB − T∞)

d
�t −eσA

(
T 4

B −T 4
∞
)
�t

]
. (12)
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Assuming perfect gas behaviour for the gas inside the bubble yields

pBi
= po

R3
o

R3
i

Ti

To

. (13)

Substituting this into the Rayleigh–Plesset equation enables numerical solution for
the cavitation bubble radius including the thermodynamics.

4.2. Comparison of various thermal models for cavitation bubble simulation

As outlined in the previous section, the gas partial pressure pg plays a vital role in
the final stage of collapse. The following are some numerical results that show bubble
dynamic behaviour with different models for gas partial pressure. The models include
isothermal, adiabatic, conduction, radiation and conduction plus radiation models. In
all of the models, the partial pressure of vapour is assumed to stay constant.

Model one – isothermal:

pgi = pgo

R3
o

R3
i

. (14)

Model two – adiabatic:

pgi = pgo

(
Ro

Ri

)3k

, k = γ =
CP

CV

= 1.4. (15)

Model three – conduction:
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= po
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o

R3
i

Ti

To

= po

R3
o
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i

1

To

{
Ti−1 +

1

nCV

[
−pB�V − kA(TB − T∞)

d
�t

]}
. (16)

Model four – radiation:
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o
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i

Ti

To

= po

R3
o
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i

1
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{
Ti−1 +

1

nCV

[
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(
T 4
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∞
)
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. (17)

Model five – conduction plus radiation:

pgi
= po

R3
o

R3
i

Ti

To

= po

R3
o

R3
i

1

To

{
Ti−1 +

1

nCV

[
−pB�V − kA(TB − T∞)

d
�t − eσA

(
T 4

B − T 4
∞
)
�t

]}
. (18)

Figure 6 presents the time history of the radius of a collapsing bubble simulated
by different models. Two values for the conduction-layer thickness, d , are used. The
bubble is assumed to have its maximum radius of 2.2 mm, which expanded from
a micro bubble with an original radius of 0.5 µm. An ambient pressure of 0.1 MPa
is assumed for p∞ in the Rayleigh–Plesset equation. It can be seen from figure 6
that identical results are obtained in the first cycle of collapse for all the models.
However, differences appear in the rebound cycles. The maximum rebound radius
reached by the isothermal model is very small owing to the constant-temperature
process inside the bubble. On the other hand, the adiabatic model predicts the largest
rebound radius. The real rebound radius must be between the predictions by the
adiabatic and the isothermal models. It is expected that the conduction plus radiation
model is likely to give results close to the real case. The model data (figure 6) also
show the significance of the conduction layer. It can be seen that the thickness of
the conduction layer has a small effect on the end results and could be changed to
improve the fit between model and experimental data.
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Figure 6. Time history of bubble radius by different thermal dynamic models
(Conduction1: d = R; Conduction2: d = 0.1R).

4.3. Comparison of numerical and experimental results

The only way to examine the above models is to compare the numerical and experi-
mental results. During a bubble collapse, the time history of the bubble radius
is a direct indicator that can be observed. Using high-speed photography, Vogel,
Lauterborn & Timm (1989), Tomita & Shima (1990) and Philipp & Lauterborn
(1998) were able to take photos of collapsing bubbles with a maximum framing rate
of one million frames per second. Because of the limit of the available experimental
data, only three cases of bubble photos are chosen to compare with the numerical
models. Of the three cases, data of Vogel et al. (1989) were for a spherical bubble
far from the boundary, and those of Tomita & Shima (1990) were for a bubble in
an infinite volume of water. Non-symmetry was not observed in these two cases.
Experiments by Lauterborn & Ohl (1997) were of a bubble near a wall, in which
non-symmetry appeared in the rebounding stages. To reduce the effects of the non-
symmetry, the equivalent radius of the bubble used by Popinet & Zaleski (2002) in
conjunction with the Rayleigh–Plesset equation is employed in this paper.

The spherical bubble case far from a boundary is available from Vogel et al. (1989).
It can be seen from figure 7, that while the rebound radii predicted by the adiabatic
and the isothermal models divert significantly from the measurements, the time history
of bubble radius predicted by the conduction plus radiation model fits very well with
the experimental data. The uncertainty is the original size of the micro bubble. To
obtain the fit in figure 7, the original radius of the micro bubble, Ro, is assumed to be
0.5 µm. The inset in figure 7 is the expansion at the moment of first collapse to its
minimum size. Although in the macro view the collapse processes predicted by the
three different models look identical, they are slightly different. For example, the
isothermal model, due to the assumption of a constant-temperature process, delays
the building up of high pressure inside the bubble and the moment of starting the
rebound is delayed about 0.02 µs relative to that of the adiabatic model.

The second comparison is made with the simulations of Popinet & Zaleski (2002)
which are based on a spherically symmetric bubble simulated by the Rayleigh–Plesset
equation as well as a numerical model capable of simulating bubble distortion. Both
models give nearly identical results, which suggests minimal effect due to change of
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bubble shape with collapse and rebound. Figure 8 shows a comparison of bubble
radius predicted by Popinet & Zaleski (2002), who compared a reversible and adiabatic
process for the gas pressure, with measurements by Lauterborn & Ohl (1997). In
Lauterborn & Ohl’s experiment, the photos show that the bubble is deformed during
collapse and rebound, leading Popinet & Zaleski (2002) to measure the bubble radii
in terms of an equivalent spherical bubble for comparison with predictions. Although
this leads to some uncertainty for comparison with predictions owing to the tails
formed during and after bubble collapse, it is seen that the models used by Popinet &
Zaleski (2002) reflect neither the damping of the maximum radius of the bubble
during expansion nor the changed period for the second collapse. Other uncertainties
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already noted by Popinet & Zaleski (2002) include the choice of initial conditions
and the thermodynamic model.

Using the conduction plus radiation model developed in this section, the process of
the collapse of a bubble with a maximum radius the same as in figure 8 is simulated.
The predicted variation of the bubble radius is shown in figure 9, including the
measurement data. The bubble is assumed to have an original radius of 30 µm. It
should be noted that the conduction plus radiation model has improved the prediction
up to and including the second rebound cycle.

Another comparison is made with the experimental work reported by Tomita &
Shima (1990) (figure 10) who give the case of a spherical bubble in an infinite body
of water. Again, the figure shows good agreement between the predicted and the
experimental data when assuming an original radius of 0.3 µm which was selected to
give the best fit.

In the above three cases of comparison, three different values (0.5, 30, 0.3 µm) were
assumed for the original radius for the micro bubbles. Although by adjusting the
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Figure 11. The time history of a cavitation bubble predicted by the conduction plus
radiation model. The inset shows the non-singular details of the function.

power of the laser beam, the maximum size of the bubble generated can be controlled
in the experiments of laser beam generated bubbles, it is impossible to know the size
of the original bubble from which the cavitation bubble is generated since the range
of the size of micro bubbles in water is quite large (Bennen 1995). In the case of laser
produced bubbles, we cannot expect to focus the laser beam on micro bubbles with
the same size every time. The need for different values of the original bubble radius for
reaching desirable agreement between simulations and measurements indeed implies
that these laser produced cavitation bubbles are generated from micro bubbles with
different sizes.

4.4. Bubble behaviour at the moment of minimum size

In the above section, the bubble is simulated using the conduction plus radiation
model, and the predicted bubble radii are seen to agree very well with the experimental
data provided the correct initial radius is selected. During the simulation, other
parameters such as the pressure and temperature inside the bubble and the velocity
of the bubble wall in the bubble dynamics equation are also obtained. The variations
of these parameters, may give insight into the complicated process of bubble collapse,
especially to the rapidity with which it collapses to its minimum size.

Figure 11 shows the time history of the radius of the bubble simulated by the
conduction plus radiation model in figure 9 where the variation of the bubble radius
has been shown to match the experimental data. The bubble is assumed to be
expanded by an impulse of energy to its maximum radius of 2 mm from a micro air
bubble with an original radius of 30 µm and at ambient temperature. It can be seen
from figure 11 that the bubble radius reaches its minimum value of about 0.01 µm
at t = 185.28 µs. The velocity of the bubble wall at that moment, dR/dt , is shown in
figure 12 and is seen to be extremely high.

Figure 13 shows the predicted temperature inside the bubble at the moment of
minimum size (0.01 µm). The high temperatures have also been calculated by previous
workers studying sonoluminescence, which led to a number of suggestions to explain
the phenomenon, such as creation of plasma of ions, neutral atom and electrons (Apfel
1999; Hilgenfeldt et al. 1999; Flannigan & Suslick 2005; Lohse 2005). Although a
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temperature as high as 15 200 K has been deduced through measurement of light
emission from an argon bubble submerged in sulfuric acid solution (Flannigan &
Suslick 2005), the calculated maximum temperature in figure 13 is still believed to be
unrealistic. Possible reasons for this include assumptions such as constant specific heat
and applicability of the perfect gas equation of state which would not be valid at such
a high temperature. However, since the duration of high temperature is extremely
small, it may not affect the simulation of the whole processes of collapse and rebound
of a bubble, particularly, if it is radiation related and hence responds as temperature
to the fourth power. For example, the duration of higher than 6000 K is only 0.236 ps
which agrees with the experimental results that the width of the light emission spike
is less than 50 ps (Barber & Putterman 1991). A similar result is obtained for the
pressure inside the bubble (figure 14).
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5. Modelling the pressure outside of the bubble
In the Rayleigh–Plesset equation, in addition to the pressure pB inside the bubble,

which was discussed in the previous section, there is another important variable,
the pressure outside the bubble denoted by p∞. The expansion and collapse of a
bubble are determined by the relative variation of these two pressures. In the case
of the laser-produced cavitation, as simulated in the previous section, the cavitation
bubble is caused by the highly focused energy of the laser beam assuming the outside
pressure remains unchanged. However, in the case of a cavitating water jet, the outside
pressure is the driving force for cavitation rather than the energy from a laser beam.
In this case, cavitation occurs only when the outside pressure p∞ reduces to below the
vapour pressure. When p∞ recovers to values above the vapour pressure, the bubble
starts to collapse. So it is essential to know the pressure variation in the water jet.

In the domain of a water jet, it is assumed that the pressure field is identical to
what is calculated from the CFD model. If it is assumed that a bubble travels with the
jet, it experiences a pressure variation while it flows through the nozzle. The pressure
profile is a function of position. To replace the pressure p∞ outside the bubble with
the calculated pressure profile, we must change the Rayleigh–Plesset equation to add
position dependence because its original form is time dependent, equation (1). This
can be achieved from the relationship of velocity (v) and displacement (x),

�x = v�t. (19)

Applying the assumption of no slip for the multiphase (bubble and liquid) flow, the
values of velocity of the bubble and the pressure on the bubble are those of the
water flow at the corresponding position. Along any flow stream path, velocity vi is
a function of position, xi , that is

vi = v(xi). (20)

From (19) and (20),

�t = (xi − xi−1)/v(xi). (21)

Using (21), the first- and second-order derivatives of the bubble radius of the Rayleigh–
Plesset equation can be written in backward difference form as:(

�R

�t

)
i

=
Ri − Ri−1

�t
=

Ri − Ri−1

(xi − xi−1)/v(xi)
, (22)

(
�2R

�t2

)
i

=

(
�R

�t

)
i

−
(

�R

�t

)
i−1

�t
=

(
�R

�t

)
i

−
(

�R

�t

)
i−1

(xi − xi−1)/v(xi)

=

(
Ri − Ri−1

(xi − xi−1)/v(xi)

)
−

(
Ri−1 − Ri−2

(xi−1 − xi−2)/v(xi−1)

)
(xi − xi−1)/v(xi)

. (23)

Similarly, the pressure, pi , is also a function of position, xi , that is

pi = p(xi). (24)

Replacing p∞i with p(xi) and substituting equations (21) to (24) in the Rayleigh–
Plesset equation (1), the required finite-difference equation in the position-dependent
form is obtained.
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Figure 15. A typical bubble cloud in a cavitation water jet.
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With p(xi) and v(xi) being calculated, a program written according to (25) is able
to give a solution that describes the variation of the bubble radius versus position.
However, since the calculated data are only on the nodes, the position, xi , in (25)
may not be coincident with the node positions when using variable step length
which is needed for solving the Rayleigh–Plesset equation. When nodes for the CFD
calculation and the Rayleigh–Plesset equation are not coincident, linear interpolation
is used.

6. Prediction of bubble cloud length
When the micro bubbles flowing in a water jet grow and then collapse and rebound

as they travel downstream, they appear like a cloud owing to the large number of
bubbles and their high velocity. The bubble cloud can be recorded photographically
(Meyer et al. 1999; Qin 2004). After a few cycles of collapse and rebound, the
maximum rebound sizes become small and eventually invisible in the photos. The
length of the cloud is denoted as LC . Figure 15 is a typical image of a bubble cloud
in a cavitating water jet.

The cloud length, LC , may be considered to be equal to the travelling distance of
the bubbles from the nozzle exit to the position where they collapse to such a degree
that their rebound sizes become invisible (this may be reached after several cycles of
collapse and rebound). We consider that the bubble cannot be measured from the
photo when the rebound radius is smaller than 0.5 mm. The distance travelled and
hence LC can be calculated by solving (25) using the pressure and velocity profiles
obtained from CFD.

The simulation is for a typical nozzle used for our erosion tests. The nozzle is
mounted in a cavitation cell (figures 16 and 17), so that the cavitation bubble cloud
can be recorded photographically. The convergent–divergent nozzle geometric details
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Figure 18. Configuration of a convergent–divergent nozzle used in the erosion tests.

are shown in figure 18. A pump pressure of 97 MPa and cell pressure of 6 MPa are
applied for the water jet. For present purposes, the bubble cloud was photographed
and the cloud length was measured on the photos as 27 mm (figure 19).
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Figure 21. Pressure profile along the jet centreline.

The first step is to simulate the water-jet flow to obtain the pressure and velocity
profiles. The meshed flow domain including the nozzle and the cavitation cell is shown
in figure 20. The nozzle flow is simulated using the RNG k − ε model for constant
density of water within the commercial code FLUENT to obtain the pressure and
velocity profiles along the centreline of the jet (figures 21 and 22). From figure 21
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Figure 23. An example of bubble radius variation in a variable pressure field (assume
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it can be seen that there is a significant pressure reduction in the throat of the
nozzle. The pressure then recovers to the ambient pressure (6 MPa) downstream of
the nozzle. If a micro bubble goes through the nozzle, it must experience this variation
of pressure leading to cavitation and collapse.

The second step of the simulation is to consider a bubble travelling along the
centreline while maintaining spherical symmetry and moving without slip relative to
the surrounding water. Assuming that the micro gas bubble has an initial size of
80 µm radius at 1 atm, it becomes 8 µm when it comes to the nozzle inlet (97 MPa).
Using the pressure and velocity profiles as shown in figures 21 and 22, the variation
of the bubble radius is calculated with the conduction plus radiation model resulting
in the variation of figure 23. (A minimum time step of 2 × 10−22 s is used in this
computation.)
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It can be seen from figure 23 that a micro bubble oscillates with increasing ampli-
tude when it reaches the throat as the water pressure decreases. The oscillating ampli-
tude is of the order of 10 µm before the pressure reaches zero. However, the bubble
grows rapidly at the throat (about x = −7.3 mm) where the water pressure reduces to a
negative value. It reaches its maximum size at a distance from the nozzle exit of about
11 mm and completely finishes its first collapse at 16 mm from the exit. A sequence
of rebounds and collapses follow the first collapse. Meanwhile, the maximum radius
for each rebound decreases gradually and finally becomes invisible. The radius of the
bubble will become its final equilibrium size of about 20 µm at the cell pressure of
6 MPa. Assuming bubbles with radius of 0.5 mm to be invisible in the bubble cloud
photos, the distance LC , from the nozzle exit to the position where the bubble radius
is smaller than 0.5 mm can be considered the predicted bubble cloud length. In other
words, in this case, the predicted bubble cloud length is 26–27 mm, which is close to
the experimental result (27 mm) obtained from the photos of the bubble cloud under
the same operating conditions (figure 19).

When solving the bubble dynamics equation, the initial bubble radius Ro at
atmospheric conditions must be assumed for determining the amount of incondensable
air in the bubble. This may affect the prediction of the bubble cloud length. To
investigate the effect of Ro on the bubble life cycle, a series of analyses was carried
out by changing Ro. We found that the distance from the exit of the nozzle to the
point where the bubble finishes its first collapse is unchanged for bubbles having an
original radius of 1 to 100 µm. Changing Ro just slightly affects the rebound radius and
slightly changes the visible bubble cloud length LC . For example, when Ro changes
from 10 to 30 µm, the bubble cloud length LC changes only 2.3 %. This is convenient
for predicting the bubble cloud length, because one can predict bubble cloud length
with satisfactory accuracy without needing to know accurately the original size of the
micro bubble which has a large range and is hard to determine.

The phenomenon that the original size of bubble does not affect the first cycle of
collapse can also be explained from the Rayleigh–Plesset equation, (1). The behaviour
of the bubble depends on the inside and outside pressures, pB and p∞. In the first cycle
of growth and collapse, the bubble experiences a very large negative pressure. The
inside pressure which consists of incondensable air contained in the original bubble
is so small compared to the magnitude of the negative pressure that its effect can be
ignored. In the following sequences of rebounds, the bubble is at the cell pressure
which is much smaller than the magnitude of the throat pressure. As a result, the
effect of inside pressure is observed.

The life cycle of cavitation bubbles in this convergent–divergent nozzle flow can
be seen more clearly if the bubble variation is plotted together with the pressure
and velocity profiles (figure 24). An existing bubble does not grow when it comes
into the convergent section of the nozzle owing to the high local pressure. When
it approaches the throat, as the pressure reduces to below the vapour pressure, the
micro bubble starts to grow. When it leaves the nozzle exit, although the pressure has
recovered to the cell pressure (6 MPa), which is much higher than the vapour pressure
(0.0042 MPa), the bubble does not stop growing. This is due to the effect of inertia
which is controlled by the second derivative term in the Rayleigh–Plesset equation.
The bubble continues growing until it reaches its maximum size at a distance of about
11 mm from the exit.

A series of simulations was conducted to predict the bubble cloud length for
different operating conditions. Figure 25 presents plots of the bubble radius variation
for a fixed 82 MPa pump pressure but variable cell pressures, pc, of 1, 2, 3, 4 and
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Figure 25. Variations of the predicted radius of a bubble in water-jet flows of the conv-
ergent–divergent nozzle at 82MPa pump pressure but five different cell pressures (pc repre-
sents the cell pressure).

5MPa. The predicted bubble cloud lengths for the above cell pressures are shown in
figure 26 together with measured bubble cloud length in the experiments carried out
in the cavitation cell (Qin 2004).

From figure 26, it can be seen that while the predictions match experiments well for
all the operating conditions, the error increases as the cell pressure (ambient pressure)
decreases. The measured bubble cloud lengths are longer than the predictions when
the cell pressure pc becomes small. One of the reasons, we believe, is the cavitation
bubble formation generated by pressure fluctuations associated with the turbulence.
This involves a mechanism of cavitation not covered by the present model which
considers only pressure variation caused by the flow path variation as the flow
passes through the convergent–divergent nozzle and beyond. Computations (Qin
2004) indicate that the turbulence in this water jet can cause the amplitude of the
pressure fluctuation to reach more than 2 MPa when the cell pressure is 2 MPa. This
means that the turbulence of the jet can generate cavitation bubbles when the cell
pressure is near 2 MPa or smaller. As a result, there are extra bubbles in the jet flow in
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Figure 26. Comparison of —–, the predicted and �, measured bubble cloud lengths with
82 MPa pump pressure and different cell pressures.

addition to those caused by the pressure reduction in the nozzle throat. Consequently,
the measured bubble cloud length is longer than the prediction. Another source of
difference between computation and measurement may be that the assumption of
spherical symmetry is partially invalid during bubble travel.

7. Conclusions
A model is developed for simulating bubbles travelling in submerged water jets.

The model uses data from CFD simulation as input to give the ambient pressure
variation along the flow. In determining the inside pressure of the bubble, a thermal
model which includes heat transfer by conduction plus radiation has been formulated.
For achieving an accurate solution of the highly nonlinear second-order differential
equation such as the Rayleigh–Plesset equation, a finite-difference variable time-step
method is applied by placing a limit on the bubble radius variation from one iteration
to the next.

By accounting for conduction and radiation effects, the model can determine more
accurately the pressure inside the bubble during collapse than the alternative models
of isothermal or adiabatic behaviour. The model also shows that radiation is the
dominant heat transfer mode. The predicted variation of bubble radius agrees well
with the experimental result, thus suggesting that an essential feature is a temperature
to the fourth-power dependence. Consistent with many previous studies, effects such
as shock waves, plasma formation during collapse, a limit on minimum bubble size,
asymmetry, non-perfect gas behaviour, compressibility and acoustic emissions have
been neglected.

Details of the process of the final stage of collapse and rebound can be simulated. If
single bubble behaviour can be extended to behaviour of bubble clouds and including
bubble behaviour near boundaries, a possible model for prediction of erosion caused
by cavitation water jet may result.

Taking the distance to where the bubble becomes invisible as the calculated bubble
cloud length, the predicted result for a water jet agrees with the measurement on
photos of bubble clouds generated in submerged water jet. By establishing the model
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for simulating bubble growth and collapse, it allows the prediction of the bubble
cloud length with different nozzle geometries under different operating conditions for
optimization of nozzle geometry.

This work was conducted within the Water Jet Fundamentals Program of CRC
Mining. Industry support from BHP Billiton–Mitsui Alliance and Anglo Coal
Australia is gratefully acknowledged.
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